Synthesis, Characterization and Photocatalytic Performance of Poly-3-Thenoic Acid/Cu-TiO2 Nanohybrid for Efficient Visible Light Assisted Degradation of Bismarck Brown R

نویسندگان

چکیده

The present work reported on the synthesis and characterization of Poly-3-Thenoic acid/Cu-TiO2 nanohybrid (PCuT) for photocatalytic degradation organic azo dye pollutant from wastewater. as-synthesized by an in-situ modified sol-gel method including chemical oxidative polymerization was characterized X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-vis.DRS), scanning electron microscopy with energy-dispersive (SEM-EDX), transmission (TEM) Brunauer-Emmet-Teller (BET) surface area analysis. results revealed formation small aggregates polymer contained high crystalline anatase TiO2 nanoparticles (XRD) narrowed bandgap energy decreased particle size smooth morphology (SEM) large (BET). All constituent elements Cu-TiO2 were found in PCuT material (EDX) their interaction studied FT-IR confirmed stability nanohybrid. activity tested Bismarck Brown R under visible light irradiation. To enhance efficiency, effects various catalyst/dye reaction parameters such as content, solution pH, catalyst dosage, initial concentration optimized.
 HIGHLIGHTS
 
 successfully synthesized situ process
 acid has enhanced absorption capacity nanohybrids
 Electron-hole recombination effectively inhibited Cu doping
 Bismark R, degraded 75 min irradiation
 GRAPHICAL ABSTRACT

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

متن کامل

Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...

متن کامل

Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...

متن کامل

Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light

This study investigated the photocatalytic behaviors for the nanocomposite of TiO2 P25 and Semnan natural zeolite in the decomposition of tetracycline under visible light in an aqueous solution. The structural features of the composite were investigated by a series of complementary techniques that included X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning elec...

متن کامل

Visible light photocatalytic activity of MWCNT/TiO2 using the degradation of methylene blue

Multi-walled carbon nanotubes (MWCNT)-doped TiO2 thin films were synthesized by the dip-coating method. The obtained products were characterized by SEM, EDX, XRD, and UV-vis absorption spectroscopy. The XRD patterns showed the presence of anatase phase. Absorption spectrum of MWCNT-doped TiO2 revealed a red shift in the optical absorption edge due to carbon doping. The photocatalytic properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in Sciences

سال: 2022

ISSN: ['2774-0226']

DOI: https://doi.org/10.48048/tis.2022.1715